universität Why you should remember what innsbruck TEAMx means

Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubisic, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Stefano Serafin, Dino Zardi

Gegründet im Jahr 1669, ist die Universität Innsbruck heute mit mehr als 28.000 Studierenden und über 4.500 Mitarbeitenden die größte und wichtigste Forschungs- und Bildungseinrichtung in Westösterreich. Alle weiteren Informationen finden Sie im Internet unter: www.uibk.ac.at.

Part I

- Motivation
- ≻ TEAMx

Part II

- ACINN activites
- i-Box & some results....

Mountain Weather and Climate

- Iong tradition
 - \rightarrow orographic precipitation
 - \rightarrow gravity waves, ~ breaking
 - \rightarrow blocking
 - \rightarrow Föhn, Bora & co
 - \rightarrow dynamic features
- > Alpex, Pyrex, MAP

the-weather/how-weather-works/highs-and-lows/block

Mountain Weather and Climate

- common interest
 - \rightarrow impact of mountains on state of the atmosphere
 - \rightarrow e.g., how does 'a mountain' change the production of rain?
 - → how does 'a mountain' modify the flow? etc., etc. ...
- From a global perspective:
 - → 'mountain' is part of the surface
 - \rightarrow character of the surface

Exchange

- character of the surface
 - → determines the *exchange* between the atmosphere and the earth
 - \rightarrow *coupling* of the atmosphere with the surface
- \succ mountain \leftrightarrow atmosphere perspective
- ➤ traditionally: this is the role of the boundary layer
 → exchange of heat, mass and momentum at the surface
 → transport to the ground / away from the ground
- example: CO₂ budget

Fate of Anthropogenic CO₂ Emissions

Land surface carbon uptake

Overall:

nnsbruck

- \rightarrow about equal shares go to oceans / land surface
- \rightarrow uncertainty of land uptake the largest
- \rightarrow land uptake modeled depends on method (2.3 vs. 2.7/3.8/3.8 PgC y⁻¹ for 2006-2015)
- \rightarrow modeled: does not take into account terrain

Hypothesis

The discrepancy of modeled land surface uptake of C and that 'required' (i.e. the residual) might at least partially disappear if 'the models' were taking topography properly into account

model approaches:

atmospheric inverse modeling

VS:

- dynamic global vegetation models, including
 - \rightarrow ecosystem modeling
 - \rightarrow inventories
 - \rightarrow upscaling from 'flux towers'

all rely on measurements: $[CO_2]$ or $w'CO_2'$

Flux tower sites

Standard deviation subgrid-scale topography (20km)

- \rightarrow represent ecosystems
- \rightarrow but not topography

Rotach et al. (2014), BAMS

universität innsbruck

Flux tower sites

- \rightarrow represent ecosystems
- \rightarrow but not topography

universität innsbruck

Modeled land surface uptake

model approaches:

- atmospheric inverse modeling vs:
- dynamic global vegetation models, including
 - \rightarrow ecosystem modeling
 - \rightarrow inventories
 - \rightarrow upscaling from 'flux towers'

→ rely on 'boundary layer exchange'

Exchange over topography

Recent developments (since MAP)

- better model resolution
 - \rightarrow e.g., COSMO-1 for NWP
 - \rightarrow EURO-CORDEX: 12.5 km grid spacing for regional climate
 - \rightarrow 2.2 km grid spacing: decade-long climate simulations (Ban et al. 2014)
- more realistic terrain
 - \rightarrow need to treat steep(er) slopes
 - \rightarrow parameterizations are not devised for non-flat terrain
- climate change
 - \rightarrow requires impact modeling
 - \rightarrow need: the right temperature at mtn. surface (not only the mtn. sfc temperature that yields the 'best precipitation')

A Change in the Perspective

- atmospheric models (weather and climate)
 - → goal: use output as input for *Earth System Services* / Climate services
 - → hydrological / agricultural / health / air pollution / applications

A Change in the Perspective

atmospheric flow:

- → if related to traditional (prognostic) variables: *downscaling (diagnosing)*
- \rightarrow for example: heat wave (temperature ...), wind power
- → if application model needs more: such as *turbulence*, *PBL height* ?
- → for example: air pollution modeling (friction velocity, TKE, PBL height, ...)

A new international initiative

TEAMx

Transport and Exchange processes in the Atmosphere over Mountainous terrain

 $ALPEX \rightarrow MAP \rightarrow TEAMx$

- discussion started: after ICAM-2015
- meetings aside conferences
- Coordination and Implementation Group established (9/2017)
- White Paper in preparation

Exchange of energy, momentum & mass

topics:

- BLs in complex terrain
- thermally driven flows
- dynamic transport
 (waves, breaking, ...)
- convection & orography
- stable BLs
- pollutant transport and dispersion

 \rightarrow and their interactions

Exchange of energy, momentum & mass

methods:

- numerical modeling
 - \rightarrow NWP (km scale)
 - \rightarrow regional climate
 - → processes and parameterizations
- observations
 - \rightarrow turbulent exchange
 - \rightarrow Lidar, scintillometer
 - \rightarrow obs strategies

goal:

\rightarrow coordinated *experiment*

Research questions

- → how does mountainous terrain impact exchange to the free atmosphere of energy, mass and momentum? (which processes, interaction, abundance, ...)
- \rightarrow do we understand the relevant processes quantitatively?
- → are current models (regional climate, NWP) able to adequately reproduce these processes?
- \rightarrow do we need a sgs-parameterization (*as gravity wave drag*) for $\mathcal{O}(10 \text{ km})$ grid spacing models?
- \rightarrow how does mountainous terrain affect air quality?

TEAMx

partners (so far...):

[+/- represented in CIG]

- University of Innsbruck
- University of Leeds (NCAS)
- Karlsruhe Institute of Technology (KIT)
- University of Trento
- University of Virginia
- Mc Gill University
- ZAMG
- MeteoSwiss
- Meteo France
- NCAR

Part II

ACINN activities (wrt TEAMx):

➢ i-Box

- \rightarrow cluster of various projects
- \rightarrow observational network *plus* numerical modeling
- → recent BAMS paper (Rotach et al. 2017, DOI:10.1175/BAMS-D-15-00246.1)
- idealized-terrain simulations
 - \rightarrow Project QUEMONT (Alexander Gohm)

i-Box in a Nutshell

i-Box in a Nutshell

24

How important are 3D effects for the simulation of TKE structure in a major Alpine valley?

Brigitta Goger¹

M. W. Rotach¹, A. Gohm¹, O. Fuhrer² I. Stiperski¹, A. A. M. Holtslag³

¹Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria

²Federal Office for Meteorology and Climatology (Meteo Swiss), Zürich, Switzerland

³Meteorology and Air Quality Section, Wageningen University, The Netherlands

Motivation & Goals

Mountain boundary layer

NWP model ($\Delta x = 1 \text{ km}$)

Rotach and Zardi (2007)

Common Turbulence Parameterizations

- Developed for hhf terrain
- 1D turbulence parameterizations
- Only vertical exchange

TKE underestimation

How do 3D effects influence the simulation of TKE in complex terrain?

Turbulence Parameterization Evaluation

NWP Model COSMO

- Similar to operational setup of MeteoSwiss (MCH)
- Initial & boundary conditions fom MCH
- $\Delta x = 1.1 \,\mathrm{km}$
- 80 vertical levels

 $(\Delta z_{min} = 10 \,\mathrm{m})$

innsbruck

i-Box Observations

- 5 flux towers
- TKE observations
- TKE budget terms: Buoyancy production Shear production Dissipation Turbulent Transport

1D Turbulence Parameterization

innsbruck

- 1.5-order turbulence closure (Mellor-Yamada)
- Prognostic equation for auxiliary variable q²=2TKE

Hybrid Turbulence Parameterization

- Case studies: Daytime up-valley wind Nighttime down-slope flows
- TKE budget evaluation of both turbulence parameterizations
- Grid point ensemble

Valley Floor Station | Daytime

innsbruck

July 01, 2015 init 00 UTC

Valley Floor Station | Daytime

July 01, 2015 init 00 UTC

Valley Floor Station | Daytime

July 01, 2015 init 00 UTC

Afternoon: strong up-valley wind

Daytime TKE | 1D Turbulence

Before noon:

Buoyant production dominates TKE well simulated by the model

Daytime TKE | 1D Turbulence

Afternoon:

Vertical shear generation together with valley wind TKE underestimated

Daytime TKE | 1D Turbulence

Afternoon:

Vertical shear generation together with valley wind TKE underestimated
Daytime TKE | Hybrid Turbulence

Afternoon:

3D shear production Correct TKE simulation

Steep Slope Station | Nighttime

July 01, 2015 init 12 UTC

Steep Slope Station | Nighttime

July 01, 2015 init 12 UTC

Nighttime: Down-slope flows / Drainage flows

innsbruck

Nighttime TKE | 1D Turbulence

Nighttime:

Model is not able to simulate nighttime TKE

Nighttime TKE | Hybrid Turbulence

Nighttime:

Successful TKE simulation Transport-dominated Minor role of TKE advection

Modified TKE structure also at higher elevations

1D Turbulence Parameterization

- Buoyancy (before noon): 1D turbulence sufficient
- Vertical shear (afternoon): TKE underestimation
- Turbulent Transport (night): no realistic TKE simulation

Hybrid Turbulence Parameterization

- 3D shear (afternoon): Crucial for correct simulation of TKE
- Turbulent Transport (night): Model is able to simulate TKE accordingly
- TKE Advection: plays minor role

Goger et al.: The Impact of 3D Effects on the Simulation of Turbulence Kinetic Energy Structure in a Major Alpine Valley, in press BLM innsbruck

ACINN activities (wrt TEAMx):

➢ i-Box

- \rightarrow cluster of various projects
- → observational network *plus* numerical modeling
- → recent BAMS paper (Rotach et al. 2017, DOI:10.1175/BAMS-D-15-00246.1)
- idealized-terrain simulations
 - \rightarrow Project QUEMONT (Alexander Gohm)

Towards generalizing the impact of surface heating, stratification and terrain geometry on the daytime heat export from and idealized valley.

Daniel Leukauf, Alexander Gohm and Mathias W. Rotach

Institute for Atmospheric and Cryospheric Sciences (ACInn) University of Innsbruck

5th of December 2016

Formulation of the Problem

- Global models: too coarse grid for complex terrain
- Unrealistic PBL structure
- Local circulations are not resolved
- Important exchange mechanisms are missing

Alexander Gohm **Qu**antifying **E**xchange Processes in **Mount**ainous Terrain

After Rotach and Zardi 2007

The valley boundary layer

Radiative Forcing (Leukauf etal. 2015)

Valley Geometry (Wagner etal. 2014,2015)

Transport of Pollution (Leukauf etal. 2016)

In this talk...

- 1 Focus on the export of heat
- **2** Dependence on Stability and Forcing
- **3** Daytime conditions
- **4** Impact of Residual Layers

and will be the

Breakup of a valley inversion

After Whiteman and McKee (1982): Breakup is reached as the valley atmosphere becomes **neutral**

Impact of the breakup

Impact of the breakup

Required, provided and exported energy

At sunrise:

$$Q_{\rm req} = L_y c_p \int_0^{h_c} \rho(z) [\Theta_E - \Theta(z)] W(z) dz$$

Required, provided and exported energy

At sunrise:

$$Q_{\rm req} = L_y c_p \int_0^{h_c} \rho(z) [\Theta_E - \Theta(z)] W(z) dz$$

During daytime:

$$Q_{\rm prov} = \int_{t_r}^{t_s} \int_A H_s(t, x, y) dx \, dy \, dt$$

Required, provided and exported energy

At sunrise:

$$Q_{\text{req}} = L_y c_p \int_0^{h_c} \rho(z) [\Theta_E - \Theta(z)] W(z) dz$$

During daytime:
$$Q_{\text{prov}} = \int_{t_r}^{t_s} \int_A H_s(t, x, y) dx \, dy \, dt$$

$$Q_{\exp} = c_{\rho} \int_{t_r}^{t_s} \int_{\mathcal{A}} \left\langle \bar{\rho} \right\rangle \left\langle \overline{\tilde{w}} \widetilde{\Theta} \right\rangle \Big|_{z=h_c} dx \, dy \, dt$$

The Breakup Parameter

$$B=rac{Q_{
m req}}{Q_{
m prov}}$$

Approximately: B > 1: Breakup is never reached $B = B_c = 1$: Breakup barely reached B < 1: Breakup is reached

Due to heat export: Breakup reached for $B_c < 1$. ($B_c \approx 0.65$)

Expectation: Vertical export depends strongly on B

A virtual lab: WRF model

- LES: small meshsize ($\Delta x = 200 \text{ m}$)
- no PBL parametrization
- no soil model
- MO-theory for u* and momentum fluxes
- u = v = 0 m/s

<u>Variables</u>

- $N = 0.006 0.018 \ s^{-1}$
- $A_{hfx} = 62.5 375 \text{ W m}^{-2}$
- Residual Layers

Residual Layers

Topography

Export of heat – Reference

Export of heat – Impact of Residual Layers

Export of heat – Impact of Residual Layers

Export of heat – Impact of Residual Layers

Impact of other parameters

≻ terrain geometry H / W, terrain form
> 2d - 3d
> elevated plateau's

Impact of other parameters

- terrain geometry H / W, terrain form
 2d 3d
- elevated plateau's

High Residual Layer

Deep Residual Layer

Vertical heat flux (W m^{-2})

Low Residual Layer

Vertical heat flux (W m⁻²)

Conclusions

- Breakup parameter determines how fast the valley BL evolves
- Total export of heat decreases exponentially with increasing ${\cal B}$
- Residual Layers impact the vertical distribution of heat
- Lead to an increase or decrease export of heat

 \rightarrow Leukauf et al. (2017), JAMC

Summary

- exchange of energy, mass and momentum
 - \rightarrow impact of mountainous terrain
 - → right for the right reason (climate & NWP services)

> TEAMx

- \rightarrow coordinated international effort
- \rightarrow partners welcome
- ➤ COSMO TKE parameterization (1d vs. 'hybrid')
 → is hybrid good enough? (LES needed?)
 → seek more general formulation
- idealized valley simulations
 - → breakup parameter: towards a sgs-parameterization?
 - \rightarrow initial stratification most relevant

Ban N, Schmidli J, Schär C: 2016, doi: 10.1002/2014JD021478

Goger B, Rotach MW, Gohm A, Fuhrer O, Stiperski I, Holtslag AAM: 2017, The Impact of 3D Effects on the Simulation of Turbulence Kinetic Energy Structure in a Major Alpine Valley, *Boundary-Layer Meteorol*, in press

- Leukauf D, Gohm A, Rotach MW, 2017: Towards generalizing the impact of surface heating, stratification and terrain geometry on the daytime heat export from an idealized valley, *J Appl Meteor Climatol*, *56*, (10), 2711-2727, doi: 10.1175/JAMC-D-16-0378.1
- Leukauf D, Gohm A, Rotach MW, Wagner JS: 2015, The impact of the temperature inversion breakup on the exchange of heat and mass in an idealized valley: Sensitivity to the radiative forcing, *J Appl Meteorol Climatol*, **54**, 2199–2216, DOI: 10.1175/JAMC-D-15-0091.1
- Leukauf D, Gohm A, Rotach MW: 2016, Quantifying horizontal and vertical tracer mass fluxes of a daytime valley boundary layer, *Atmos Chem Phys*, **16**, 13049–13066, doi:10.5194/acp-16-13049-2016

Le Quéré et al. 2016, doi:10.5194/essd-8-605-2016

- Rotach MW, Stiperski I, Fuhrer O, Goger B., Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J: 2017, Investigating Exchange Processes over Complex Topography: the Innsbruck-Box (i-Box), *Bull Amer Meteorol Soc*, **98**, No 4, 787-805, doi: 10.1175/BAMS-D-15-00246.1
- Rotach MW, Wohlfahrt G, Hansel A, Reif M, Wagner J, Gohm A: 2014, The world is not flat implications for the global carbon balance, *Bull Amer Meteor Soc*, 95, 1021–1028, doi: <u>http://dx.doi.org/10.1175/BAMS-D-13-00109.1</u>

Rotach MW and Zardi D: 2007, On the boundary layer structure over highly complex terrain: key findings from MAP, *Quarterly J Roy Meteorol Soc*, **133**, 937–948, doi: 10.1002/qj.71

Wagner JS, Gohm A, Rotach MW: 2015, Influence of along-valley terrain heterogeneity on exchange processes over idealized valleys, *Atmos Chem Phys*, 15, 6589-6603 15, 415-451, doi: 10.5194/acp-15-6589-2015

universität Wagner JS, Gohm A, Rotach MW: 2015, The impact of valley geometry on daytime thermally driven flows and vertical transport processes, *Quart J Roy Meteorol Soc*, **141** (690), 1780-1794, part: A, doi: 10.1002/qj.2481

Impact of 3	D effects	on TKE	in a	a valley
-------------	-----------	--------	------	----------

TKE forcing	Location	bias [1D] $(m^2 s^{-2})$	bias [hybrid] $(m^2 s^{-2})$	$mse [1D] (m^2 s^{-2})$	${ m rmse}$ [hybrid] $({ m m}^2{ m s}^{-2})$
Buoyancy	Valley floor	-0.32	-0.30	0.36	0.34
	Slopes	0.03	0.04	0.16	0.15
Shear	Valley floor	-0.44	0.08	0.48	0.33
	Slopes	-0.45	-0.22	0.51	0.34
Transport	Valley floor	-0.22	-0.12	0.25	0.16
	Slopes	-0.35	-0.32	0.38	0.36

Table 2 Bias and rmse for TKE for simulations with both turb_1D and turb_hybrid. The

Title

FIG. 7. As in Fig. 2, but for the simulation sets H*-Std-N10-A* and W*-Std-N10-A*. The simulation L-Std-N10-A1 is identical to H1.5-Std-N10-A1 and to W2-Std-N10-A1.

 \rightarrow no impact of valley width / valley depth

2723

FIG. 8. As in Fig. 2, but for the simulation sets C-Std-N*-A*, CP1.3-Std-N*-A*, CP1.0-Std-N*-A*, CP0.75-Std-N*-A*, and C3D-Std-N10,18-A*. The vertical heat flux over the three-dimensional valley has been averaged over the innermost 10 km (inner), the 10 km nearest to the valley entrance (outer), and over the whole valley (whole).

 \rightarrow impact of valley form (cosine instead of linear), 3d (instead of 2d) and 'elevated plateaus'

GAPS in knowledge

 \rightarrow project @ UIBK will start soon ...

,Near-surface' exchange

,Near-surface' exchange

Exchange over topography

- Boundary layer is inhomogeneous by construction
- ➤ thermally induced circulations
 → slope / valley flows
 → mountain venting
- dynamic modification (gravity wave drag, etc)
- geometrical effects (e.g., narrowing / widening) for mass

Coarse models

- \rightarrow high spatial resolution required $\mathcal{O}(100\text{m})$
- \rightarrow climate modeling: $\mathcal{O}(100$ km)

Momentum exchange

no gravity wave drag

mean Jan NH SLP (84-86)

→ total exchange: subgridscale contribution parameterized

80

Momentum

 \rightarrow orographic drag (e.g. Palmer et al. 1986)

Heat

 \rightarrow Noppel and Fiedler (2002) \rightarrow

 \rightarrow Schmidli and Rotunno (2012)

>idealized modeling >systematic >no parameterization yet

Heat exchange

- \rightarrow perfectly ideal
- \rightarrow influence of surrounding topography
- \rightarrow influence of geometry

Schmidli and Rotunno 2010

Heat exchange - geometry

Momentum

 \rightarrow orographic drag (e.g. Palmer et al. 1986)

Heat

 \rightarrow Noppel and Fiedler (2002)

 \rightarrow

 \rightarrow Schmidli and Rotunno (2012)

Mass

 \rightarrow Weigel et al. (2007)

>idealized modeling

>no parameterization

>systematic

yet

Numerical Modeling

- > MAP Riviera example
- three days with weak synoptic forcing
- > ARPS, LES, high resolution, several nests
 - \rightarrow (very) good correspondence to observations
 - → different (all) variables simultaneously in correspondence

Wind along valley

25. August (1300 UTC)

observation

simulation

Profile Potential Temperature

Chow et al. 2006, JAM Weigel et al. 2006, JAM

Moisture exchange

universität

innsbruck

- MAP Riviera example
- three days with weak synoptic forcing
- > ARPS, LES, high resolution, several nests

Exchange of CO₂

- different source/sink characteristics than moisture
- 'active' during the night as well
- importance of SBLs/drainage flows

Some pioneering studies:

- ➤ carbon budgeting methods yield inconsistent results
 → Niwot Ridge AmeriFlux site (Desai et al. 2011)
- mountain induced circulation with significant impact on regional carbon budget
 - → Airborne Carbon in the Mountains Experiment (Sun and De Wekker 2011)
- meso-scale circulations contribute to total exchange
 - → Regional carbon budget models (e.g., Perez-Landa et al. 2007; Pillai et al. 2011)

CO₂ exchange

Summary

- Boundary layer structure in complex terrain
 - \rightarrow impact on overall exchange to FT
 - → turbulent exchange *plus* meso-scale circulations *plus* terrain effects
- parameterizations exist for momentum
 - \rightarrow not for heat
 - \rightarrow nor for mass
- need to understand relative importance of processes
 - → comprehensive data sets: more than a few episodes / spatial coverage
 - \rightarrow high-resolution numerical modeling
 - \rightarrow combined observations/modeling testbed

Atmospheric point informtion

- \rightarrow boundary layer structure
- \rightarrow bundary layer scaling

Non-horízontally homogeneous

Large roughness elements
 (plants, rocks, trees, houses)

→
→ Topography

