

The White Paper for TEAMx (Multi-Scale Transport and Exchange Processes in the Atmosphere over Mountains – Programme and Experiment)

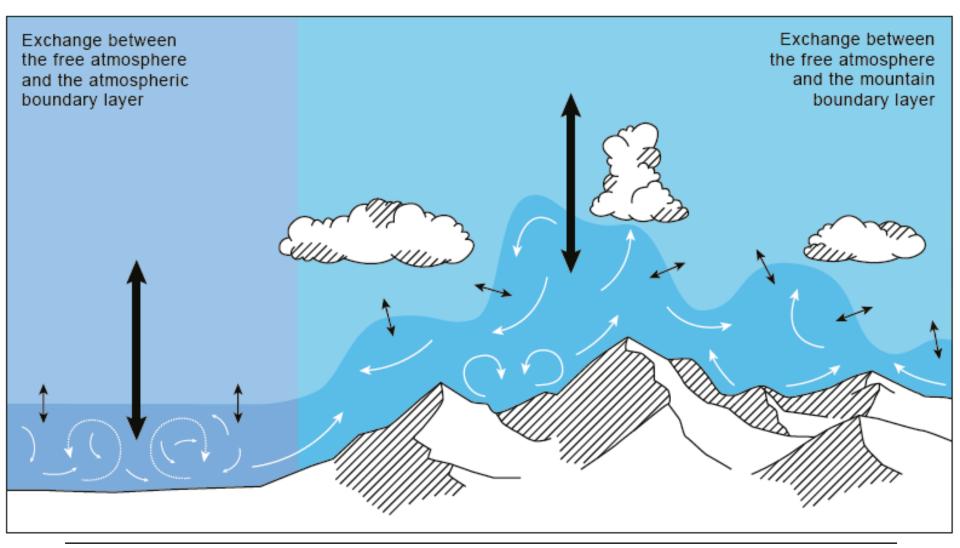
Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubisic, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Stefano Serafin, Dino Zardi

- > TEAMx in a nutshell
- Process understanding
- Numerical modeling
- Observational issues
- Applications

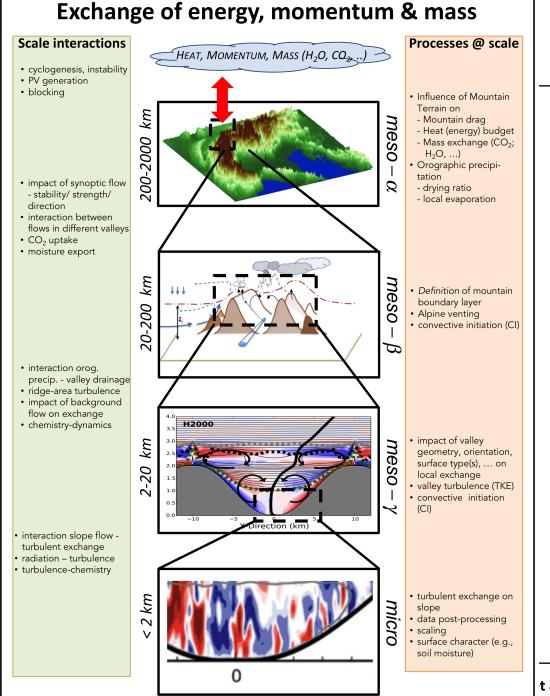
An international programme for Mountain Weather and Climate

TEAMx

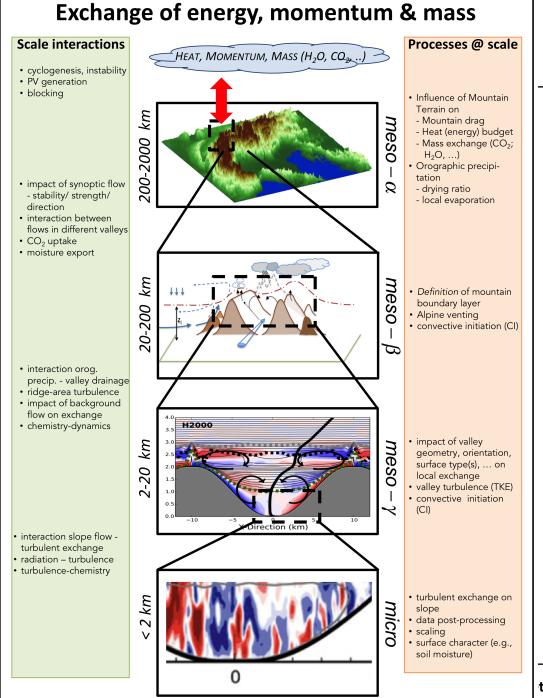
Multi-scale <u>Transport and Exchange Processes in</u> the <u>Atmosphere over Mountains – Programme</u> and Experiment


 $ALPEX \rightarrow MAP \rightarrow TEAMx$

- discussion started: after ICAM-2015
- meetings aside conferences


- Coordination and Implementation Group established (9/2017)
- White Paper in preparation

Mountain Weather and Climate


ÖGM Jahresversammlung 2019 | Rotach et al. | 26.4. 2019

topics:

- BLs in complex terrain
- thermally driven flows
- dynamic transport
 (waves, breaking, ...)
- convection & orography
- stable BLs
- pollutant transport and dispersion

 \rightarrow and their interactions

methods:

- numerical modeling
 - \rightarrow NWP (km-scale)
 - \rightarrow regional climate
 - → processes and parameterizations
- observations
 - \rightarrow turbulent exchange
 - \rightarrow Lidar, scintillometer
 - \rightarrow obs strategies

goal:

→ coordinated *experiment* (2022-23)

TEAMx - Overarching research questions

- How does mountainous terrain impact exchange to the free atmosphere of energy, mass and momentum? (which processes, interaction, abundance, ...)
- Do we understand the relevant processes and their interactions quantitatively?
- Are current models (regional climate, NWP, pollutant dispersion) able to adequately reproduce these processes?
- Do we need a sgs-parameterization (as for gravity wave drag) for O(10 km) grid spacing models?
- How does mountainous terrain affect air quality? (under which conditions is exchange suppressed?)

Goal	Specific description	Target
Understanding of exchange processes over mountains and their interactions	 micro-scale to meso-scale interactions 	 theoretical basis for regional water- and energy cycles model parameterisations
Numerical modelling	 point forecast (weather) point diagnostics (climate) 	 models fit for application in complex terrain comparable accuracy of point forecast / diagnose as over 'flat terrain'
TEAMx joint experiment	 spatial inhomogeneity coordination of instrumentation 	 test scientific hypotheses development/verification of parameterisations
Weather / Climate Services	 input data to Atmosphere- influenced Process Models (AiPMs) climate scenarios for mountainous areas feasible 	 AiPMs can use (reliable) model output as input accuracy not limited by atmospheric input

Goal	Specific description	Target
Understanding of exchange processes over mountains and their interactions	 micro-scale to meso-scale interactions 	 theoretical basis for regional water- and energy cycles model parameterisations
Numerical modelling	 point forecast (weather) point diagnostics (climate) 	 models fit for application in complex terrain comparable accuracy of point forecast / diagnose as over 'flat terrain'
TEAMx joint experiment	 spatial inhomogeneity coordination of instrumentation 	 test scientific hypotheses development/verification of parameterisations
Weather / Climate Services	 input data to Atmosphere- influenced Process Models (AiPMs) climate scenarios for mountainous areas feasible 	 AiPMs can use (reliable) model output as input accuracy not limited by atmospheric input

Goal	Specific description	Target
Understanding of exchange processes over mountains and their interactions	 micro-scale to meso-scale interactions 	 theoretical basis for regional water- and energy cycles model parameterisations
Numerical modelling	 point forecast (weather) point diagnostics (climate) 	 models fit for application in complex terrain comparable accuracy of point forecast / diagnose as over 'flat terrain'
TEAMx joint experiment	 spatial inhomogeneity coordination of instrumentation 	 test scientific hypotheses development/verification of parameterisations
Weather / Climate Services	 input data to Atmosphere- influenced Process Models (AiPMs) climate scenarios for mountainous areas feasible 	 AiPMs can use (reliable) model output as input accuracy not limited by atmospheric input

Goal	Specific description	Target
Understanding of exchange processes over mountains and their interactions	 micro-scale to meso-scale interactions 	 theoretical basis for regional water- and energy cycles model parameterisations
Numerical modelling	 point forecast (weather) point diagnostics (climate) 	 models fit for application in complex terrain comparable accuracy of point forecast / diagnose as over 'flat terrain'
TEAMx joint experiment	 spatial inhomogeneity coordination of instrumentation 	 test scientific hypotheses development/verification of parameterisations
Weather / Climate Services	 input data to Atmosphere- influenced Process Models (AiPMs) climate scenarios for mountainous areas feasible 	 AiPMs can use (reliable) model output as input accuracy not limited by atmospheric input

Goal	Specific description	Target
Understanding of exchange processes over mountains and their interactions	 micro-scale to meso-scale interactions 	 theoretical basis for regional water- and energy cycles model parameterisations
Numerical modelling	 point forecast (weather) point diagnostics (climate) 	 models fit for application in complex terrain comparable accuracy of point forecast / diagnose as over 'flat terrain'
TEAMx joint experiment	 spatial inhomogeneity coordination of instrumentation 	 test scientific hypotheses development/verification of parameterisations
Weather / Climate Services	 input data to Atmosphere- influenced Process Models (AiPMs) climate scenarios for mountainous areas feasible 	 AiPMs can use (reliable) model output as input accuracy not limited by atmospheric input

TEAMx

partners (so far...):

- University of Innsbruck
- Karlsruhe Institute of Technology (KIT)
- Mc Gill University
- University of Leeds (NCAS)
- University of Trento
- University of Virginia
- MeteoSwiss
- Meteo France (CNRS)
- NCAR
- ZAMG

TEAMx – organization

- ➤ TEAMx-Seed
 - \rightarrow coordination office (UIBK)
 - \rightarrow institutional crowd funding
 - \rightarrow Coordination and Implementation Group (CIG)
- Research is bottom-up financed
 - \rightarrow individual projects (e.g. CROSSINN, PI Bianca Adler, KIT)

 \rightarrow bilateral (e.g., planned MF-ACINN)

- → multi-lateral: e.g., ASTER [Euregio], PI Manuela Lehner (ACINN), with U Trento and U Bolzano, e.g. planned ITN
- \rightarrow similar to MAP

universität

innsbruck

- Ressources for experiment
 - \rightarrow partners' (e.g., KIT cube, i-Box, MF, ...)
 - \rightarrow national obs programs (e.g., NCAS, NCAR, ...)
- Computing ressources: individual, PRACE, ...

TEAMx


Forms of getting involved

Pl's / institutions

- sign TEAMx MoU
- participate in 1st TEAMx Workshop
 - \rightarrow August 28-30 2019, Rovereto (I)
 - → refine / finalize *TEAMx*-*White Paper*
 - \rightarrow TEAMx working groups (join one...)
- write proposal (get it funded)
 - \rightarrow alone or join a team
 - \rightarrow get it approved by TEAMx
- 'observe from distance'

Status White Paper

- Understanding
- Modeling
- Observing
- Providing services for mountain weather and climate

ÖGM Jahresversammlung 2019 | Rotach et al. 12 vijert kondander-works/highs-and-lows/block

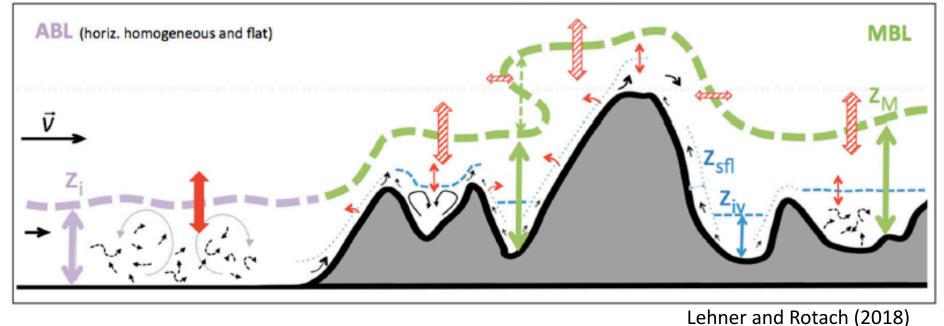
herflow.com/gravity-

- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- → Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Where (what) is the MBL?

'The Atmospheric Boundary Layer is that part of the troposphere that is **directly influenced** by the presence of the **earth's surface**, and responds to surface forcing with a **timescale of about an hour or less'**. Stull (1988)

diagnostics, ABL height:


- \rightarrow based on θ -profile (Zilitinkevich et al. 2012, Seibert et al. 2000, ...)
- \rightarrow based on turbulence state of ABL (e.g., Ri / TKE criterion)
- → based on other influences (such as aerosol / water vapor mixing / concentrations)

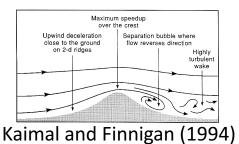
\rightarrow dependent on application (even in HHF terrain)

Mountain Boundary Layer (MBL)

- height of layer influenced by surface
 - \rightarrow not only surface character (turbulence)
 - \rightarrow interaction with meso-scale flow (valley / slope winds)
- traditional diagnostics do not yield z_{MBL}

ÖGM Jahresversammlung 2019 | Rotach et al. | 26.4. 2019

free atmosphere


Suggested definition Mountain Boundary Layer

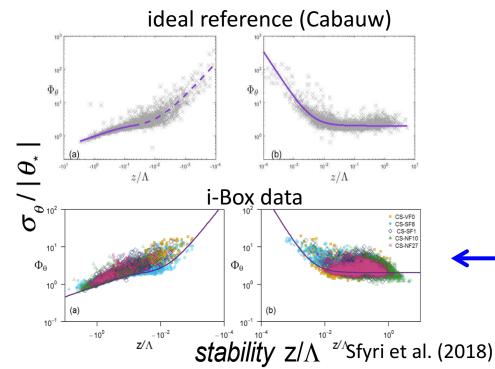
The Mountain Boundary Layer (MBL) is the lowest part of the troposphere that is directly influenced by the mountainous terrain, responds to surface and terrain forcings with timescales of about one to a few hours, and is responsible for the exchange of energy, mass, and momentum between the mountainous terrain and the free troposphere.

explicit research questions:

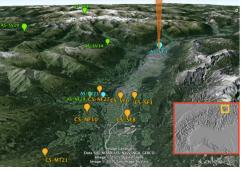
- \rightarrow how (based on what) to define diagnostics for z_{MBL} ?
- \rightarrow 'general' structure feasible?

Inhomogeneous by definition:

- 'BL approximation' invalid
- diagnostics for MBL height
- three-dimensional structure
 - → related to thermally driven / dynamically modified meso-scale flow
 - \rightarrow scale interactions



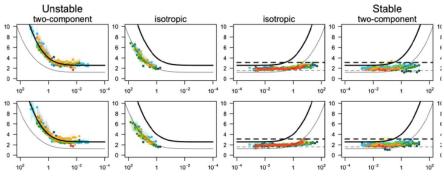
Processes (understanding)


- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- \rightarrow Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Land-atmosphre exchange

Near-surface exchange (MOST or no-MOST)

i-Box sites

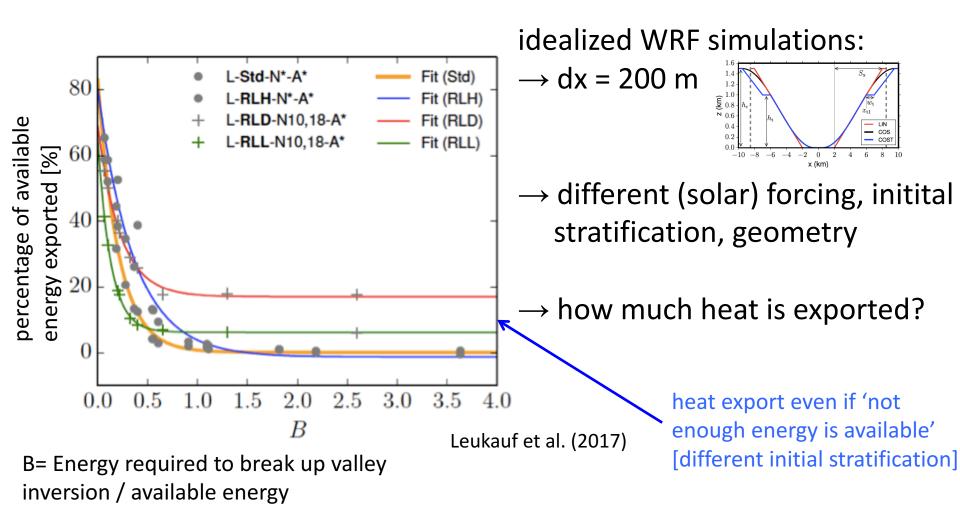


each site is different

 (all are higher than ref)
 not dependent on slope angle

- \rightarrow scaling (*local* is not really satisfying)
- \rightarrow data post-processing
- \rightarrow differences to 'HHF terrain'?

Land-atmosphre exchange


- Scaling
 - \rightarrow value of local scaling?
 - \rightarrow how to address spatial inhomogeneity
 - → isotropy scaling (Stiperski et al. 2019)
- Data treatment
 - \rightarrow 'slope normal' or vertical
 - \rightarrow data post-processing, DQ
- Advection, EB closure

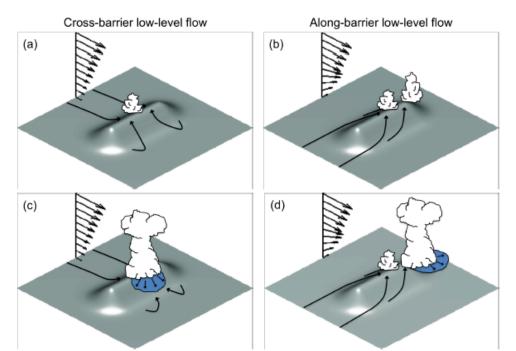
____ BL approximation! (Oldroyd et al. 2015)

- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- \rightarrow Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Heat export from idealized valley

Heat and mass exchange with the free atmosphere

- Non-idealized topography → can overall behaviour be retained?
- ➤ Impact of background flow
 → synoptic wind
 → stratification
- Scale interactions (meso-, micro-scale flows)
- Experimental verification?



- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- → Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Convective pre-conditioning and initiation

- Role of orography for Cl qualitatively understood
- Challenge: get it quantitatively right
- Challenge: interaction with BL flow
- Surface interaction (e.g. soil moisture)

Kirshbaum et al. 2018

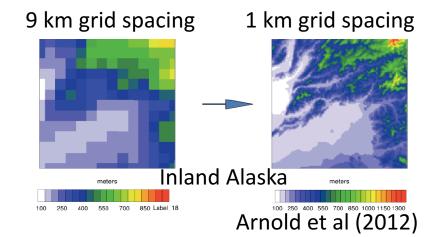
ÖGM Jahresversammlung 2019 | Rotach et al. | 26.4. 2019

- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- \rightarrow Turbulent exchange due to low-level gravity-wave processes
- \rightarrow Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Turbulent exchange due to low-level gravity-

wave processes

GW drag: the only parameterized exchange process (momentum) in numerical models (away from the surface...)

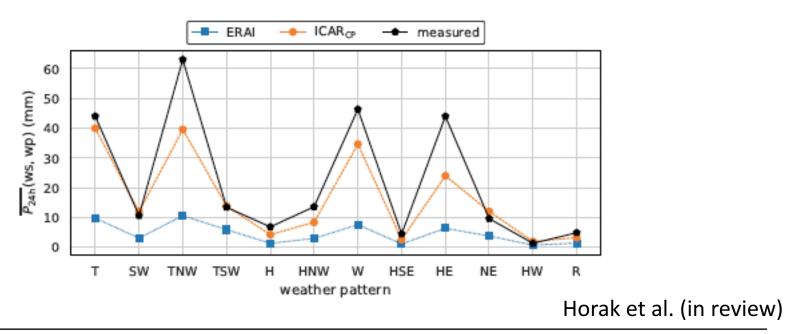

However:

- GW dynamics govern orographic flows such as föhn, gap flows rotors, ..
 - \rightarrow these contribute to exchange (but how?)
 - \rightarrow we only begin to learn
- ➢ Interaction to turbulence
 → not only wave breaking
- Add heat & mass (moisture) to GW parameterizations?
 → as 'clear' as for momentum?

- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- \rightarrow Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Mountain Climate change and diagnostics

- Mountainous regions more susceptible to climate change
 → larger than average temperature change...
 - \rightarrow elevation dependent warming (not generally consistent)
 - \rightarrow other variables?
- Climate models not suffuciently resolved
 - \rightarrow CORDEX: 12 km
 - \rightarrow interpolation not a solution!
 - $\rightarrow \mathcal{O}(1 \text{ km})$ extremely expensive
 - \rightarrow downscaling!



Climate services need equally as good information as over flat land (coasts, prairies, cities,...)

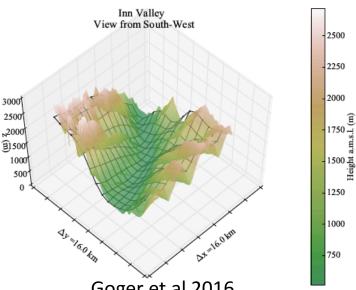
Climate diagnostics

- > Example ICAR (physically based downscaling)
 - → Intermediate Complexity Atmospheric Research model...
 - → combines analytic (wave) solution with thermodynamic and other processes
 - \rightarrow 24 hr precipitation in Southern Alps (NZ)

- \rightarrow Three-dimensional structure
- \rightarrow Land-atmosphre exchange
- \rightarrow Heat and mass exchange with the free atmosphere
- → Boundary-layer control of convective pre-conditioning and initiation
- → Turbulent exchange due to low-level gravity-wave processes
- \rightarrow Climate change and diagnostics
- \rightarrow Air pollution in complex terrain

Air pollution in complex terrain

- Conditions of inhibited exchange MBL – free troposphere \rightarrow air pollution 'within orography' \rightarrow stable conditions
- Conditions of enhanced exchange MBL – free tropophere
 - \rightarrow export of precursors to oxidants
 - \rightarrow long-range transport (e.g., Ozone)
- For reactive gases: interaction between chemical reaction and exchange
 - \rightarrow similar treatment as with turbulent Dahmköhler number: mountain exchange Da?


universität

Overall: resolution matters

- better resolution: steeper slopes
 - \rightarrow instabilities (potentially)
 - \rightarrow sfc exchange parameterization gets less appropriate
 - \rightarrow BL parameterization (1d) gets less appropriate
 - → external issues (ororaphic shading, 1d radiaion treatment, ..) getting more critical
- best resolution: useless, if sfc information is missing

Topics Numerical Modeling

- Coordinates
 - \rightarrow terrain-following (influenced)
 - \rightarrow immersed BC (IBM)
 - \rightarrow leave finite differences?
- ➢ physics parameterizations
 → boundary layer and turbulence (grey zone on top!)
 → radiation (1d)

- Initial conditions: most assumptions not met^{Goger et al 2016}
 - → small departures, Gaussian error statistics, unbiased model and observations
 - \rightarrow obs are too often discarded
- Climate models: still 'hydrostatic resolution'
 - \rightarrow need sgs parameterization for heat and mass?

'GABLS' for complex terrain

- → usually: [observations vs LES] <-> meso-scale
- → reference numerical experiment (what are the biggest problems?)
- \rightarrow how to include observations?
- ➤ same quality of point forecast as for flat terrain
 → not only traditional variables ('PTU'), but also turbulence (right for the right reason)
- Same robustness of climate scenario information as for flat terrain
 → downscaling in complex terrain (physically based, spatial correlations considered)

Targets Numerical Modeling

- Pollutant dispersion models:
 - → 3d treatment (but computationally 'cheap'): revival of massconsistent models?
 - \rightarrow chemical reactions included (Da...)
- Planning for field experiment
 - \rightarrow positioning of instrumentation
 - \rightarrow flight plans and coordination
 - \rightarrow critical observations?

Overall target: an internationally coordinated field experiment

 \rightarrow 2022/23

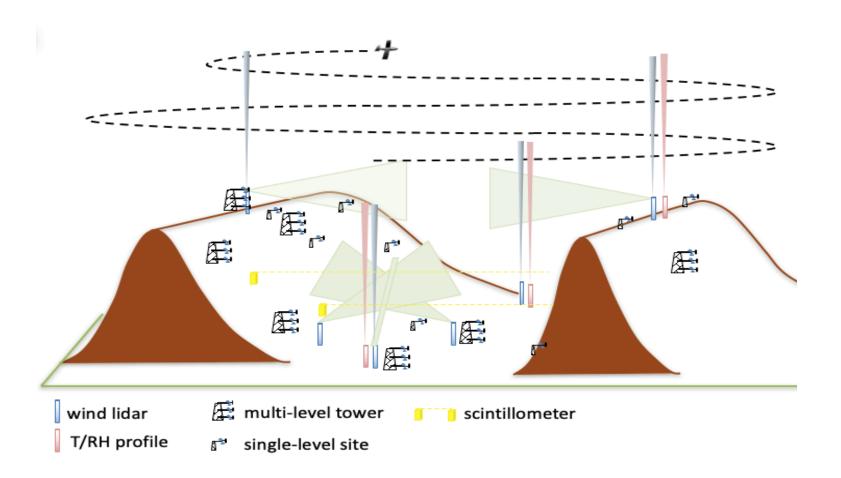
 \rightarrow likely in the Alps

- \rightarrow possibly 'satellite sites'
- provide data to
 - \rightarrow test / challenge process understanding
 - \rightarrow test hypotheses
- validate models
- training data for downscaling (climate services)

prerequisites

- Solve terrain specific problems for different techniques
 - \rightarrow turbulence: agree on post-processing 'over slopes'
 - \rightarrow scintillometry: influence of 'height' (differet scaling)
 - → airborne turbulence: generality /robustness of wavelet approach
 - \rightarrow satellite: spatial data but quality?
- advance benefits of new technology /terrain specific advantages
 temperature /humidity (Raman lidars): 'across' orography?
 - \rightarrow drones
 - \rightarrow passive T profilers: use sfc data @ different elevations

Target area


Spatial variability

 \rightarrow need 'many instruments' (many groups)

- \rightarrow coordination
- ➢ IOP several months − EOP < 1 yr</p>
 - \rightarrow cannot meet 'climate needs' (long time series, 30 yrs)
 - → presence of 'longterm sites' (especially for 'variables' related to exchange') andvantageous
- Generic ,orography elements'
 - → the valley system: curvature? side valleys? Orientation? Mountain-top sites?
 - \rightarrow the isolated mountain
 - \rightarrow others?

Field Experiment - target area

Recall targets:

- Point forecast (weather) / point diagnostics (climate): comparable accuracy of as over 'flat terrain'
- Weather /climate services: accuracy must not be limited by atmospheric input

- \rightarrow right for the right reason
- → not only traditional weather and climate variables, but also those required for 'application models'

Weather and Climate Services:

- …are often mountain-specific
 - → flood forecasting (flash floods), hydrological extreme events safety / natural desasters
 - \rightarrow avalanche forecast warnings
 - \rightarrow hydro power (planning and management) energy
- ...often have particular challenges in regions characterized by orography:
 - \rightarrow air pollution in valleys health
 - \rightarrow wind energy (siting) energy

universität

nnsbruck

- \rightarrow transportation (e.g., fog at airports in complex terrain)
- \rightarrow agricultural forecasts (e.g., frost)
- climate scenarios: assume that 'the physics will not change'
 thus the physics must be correctly represented in the models

Atmosphere-influenced process models (,applications')

- used today (weather) for
 - \rightarrow warnings
 - \rightarrow on-demand economy (hydro power, wind, solar)
 - \rightarrow short-term planning (toursim, health (e.g. pollen)
 - \rightarrow optimizing operations (traffic etc)
- used in scenario mode for
 - → planning (e.g., 30 yrs planning horizon for hydrological infrastructure)
 - \rightarrow economic decisions
- > often need ,more than PTU':
 - → correct point forecasts / point diagnostics in complex mountainous terrain

Summary

- TEAMx has 'lifted off'
- Bottom-up project structure
 - \rightarrow no 'big pot' for finances
 - \rightarrow but many interesting topics
- > Workshop in Rovereto (28-30. August 2019)
 - \rightarrow finalize White Paper
 - \rightarrow processes / numerical modeling / observations
- Scientific goal
 - → better understand exchange processes between orography and the free troposphere
 - \rightarrow at all scales incl. their interactions
- ➤ Target:
 - → point forecasts (weather) and diagnostics (climate) at an accuracy comparable to that for flat terrain

Thank you for your attention!

Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubisic, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Stefano Serafin, Dino Zardi