

The First TEAMx Workshop - a summary of achievements after a week-end of contemplation

Mathias W. Rotach¹, Marco Arpagaus², Joan Cuxart³, Stephan De Wekker⁴, Vanda Grubišić⁵, Norbert Kalthoff⁶, Dan Kirshbaum⁷, Manuela Lehner¹, Stephen Mobbs⁸, Alexandre Paci⁹, Elisa Palazzi¹⁰, Stefano Serafin¹, Dino Zardi¹¹

¹University of Innsbruck, ²MeteoSwiss, ³University of the Balearic Islands⁴University of Virginia, ⁵NCAR EOL, ⁶Karlsruhe Institute of Technology, ⁷McGill University ⁸National Centre of Atmospheric Sciences, ⁹Meteo France, ¹⁰ISAC CNR, ¹¹University of Trento

nnsbruck

Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains Programme and experiment

- ...a bottom-up financed research programme on weather, climate
 & air pollution in mountain areas
- 'crowd funding' for a Programme Coordination Office (PCO)
 - → sponsors: Karlsruhe Institute of Technology KIT, Météo France, MeteoSwiss, National Center for Atmospheric Science (NCAS), University of Innsbruck, University of Trento, ZAMG, (Center for Climate Systems Modeling (C2SM)

→ Progamme Coordinator: Stefano Serafin (UIBK)

Overarching objectives

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi- platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

- > TEAMx Science plan is summarized in a White Paper \rightarrow WP1.0
- Work out [the basis for] TEAMx WP2.0
- Work out requirements /availabilities for the joint experiment
- Work out possibilities for joint numerical modelling exercises

TEA	K
Politi-scale croamoor. Rachange process in t Sconger procession Scontaine Programme and experient	,n4
Version a 10 August 2019	
Version * 2013	

Topics

- Discussion A: Air chemistry and atmospheric dispersion modelling
- Discussion B: Climate processes / climate change in mountains
- Discussion C: Orographic convection
- Discussion D: Orographic flow dynamics
- > Discussion E: Land atmosphere exchange
- Discussion F: Mountain Boundary Layer Flows
- Discussion G: Strategy for field experiment
- Discussion H: Strategy for numerical modelling
- → all in relation to and dependent on transport and exchange processes in the atmosphere over mountains

- > Turbulence Theory 'not applicable' in complex terrain
 - → assumption: 'horizontally homogeneous & flat' is violated ...
 - \rightarrow relevant in land atmosphere exchange
 - \rightarrow relevant in Mountain Bundary Layer flows
 - → relevant in the interaction between turbulent boundary layer and meso-scale mountain-induced flows
 - \rightarrow relevant for air pollution $% \left({{{\mathbf{r}}_{i}}} \right)$ in mountain terrain
 - \rightarrow relevant for climate diagnostics
- Joint experiment must produce data
- Joint numerical modelling efforts must be established to obtain a benchmark

- Processes behind 'elevation dependent warming' (EDW) not understood
 - → mountain areas usually with larger ΔT than other regions, warming is height dependent
 - \rightarrow other elevation dependent changes (beyond T)?
- understanding of land atmosphere exchange / MoBL flows essential
- > no data available in mountain areas
 - \rightarrow here: data likely relevant to understand EDW
 - \rightarrow how can joint experiment produce 'climate data'?
- high-resolution climate modelling with focus on mountains missing

Orographic precipitation

- \rightarrow large progress with respect to synoptically forced precipitation processes in projects like MAP
- Convection initiation
 - \rightarrow primary and secondary triggering
 - \rightarrow interaction with the MoBL / land atmosphere exchange

> predictability

- \rightarrow shorter time scales (weather)
- \rightarrow role of upstream conditions?
- Hot topic in climate community
 - \rightarrow regional: FPS CORDEX not (yet) with a 'mountain focus'
 - → global: address biases in conv parameterizations over mountains

> Orographic flow dynamics

- → possibly the most mature (i.e., oldest) topic GWD parameterizations in global models to get the momentum balance right
- \rightarrow but: Irina Sandu's presentation on Monday ...

Long list of open questions, some of which we start answering...:

- What causes inter-model differences? parameterizations, underlying subgrid orography? filtering of resolved orography? (*Elvidge et al., 2019*)
- Is the transition between resolved and parametrized handled well? (Van Niekerk et al. 2016, Vosper 2016, Kanehamaet al., submitted)
- Can we learn from high resolution simulations whether the schemes well suited for complex mountain ranges? (*Vosper et al., 2015, 2016, Van Niekerk et al, 2018, Vosper et al, submitted*)
- How should the partition between different schemes done?
- How does small scale orography affects the large (planetary scales)?

> Orographic flow dynamics

- → possibly the most mature (i.e., oldest) topic GWD parameterizations in global models to get the momentum balance right
- \rightarrow but: Irina Sandu's presentation on Monday ...
- Recent advances extending into the stratosphere (e.g., DEEPWAVE)
 - $\rightarrow Alps?$
- Mass exchange (not only momentum)
 - \rightarrow alpine pumping
 - \rightarrow air chemistry and pollution
- Largely determined by (meso-to synoptic scale) upwind conditions

- > Air chemistry and atmospheric dispersion modelling
- Two distinctive scales
 - → I: role of dynamic processes (e.g. GW) processes on mass transport through accross stroppopause largely unknown
 - \rightarrow II: local 'valley scale' ('CAP pollution')
- ad I) Interaction between chemical processes (various characteristic time scales) and 'mountain flows' (various characteristic time scales) largely unexplored
 - → Largely determined by (meso-to synoptic scale) upwind conditions
- > Ad II): sub-grid scale parameterization for pollutants missing
 - → MoBL and land atmosphere exchange (dispersion models for steep terrain)
 - \rightarrow turbulence theory

TEAMx Joint Field Experiment

- Unique with respect to earlier mountain meteorology projects
 by combining
 - \rightarrow local forcing & meso-scale upwind conditions
 - \rightarrow what must be coordinated?
 - \rightarrow how to produce 'more than the sum' in terms of exp facilities?
- Unique with respect to earlier BL experiments (Perdigao, Materhorn, ..) - by combining
 - → different terrain elements & surface elements
 - \rightarrow slope / ridge etc. vs. alpine pasture / forest / glacier / urban
- Unique with respect to earlier ,mountain meteorology projects'
 by including needs of climate modelling
 - \rightarrow by including air chemistry & atmospheric composition
- All these: TEAMx = Multi Scale

universität

innsbruck

Major next step: blueprint for the joint experiment

Joint numerical modelling

- Lack of theoretical reference case
 - \rightarrow for transport and exchange over mountains
 - \rightarrow different strategies for an 'ideal \rightarrow real' or 'real \rightarrow ideal' modeling strategy
 - \rightarrow GABLS-ct
- A number of specific modelling issues
 - \rightarrow terrain representation
 - \rightarrow high-resolution re-analysis
 - \rightarrow CORDEX FSP on mountains

Exchange

Thank you for your attention!

Mathias W. Rotach, Marco Arpagaus, Joan Cuxart, Stephan De Wekker, Vanda Grubišić, Norbert Kalthoff, Dan Kirshbaum, Manuela Lehner, Stephen Mobbs, Alexandre Paci, Elisa Palazzi, Stefano Serafin, Dino Zardi

