

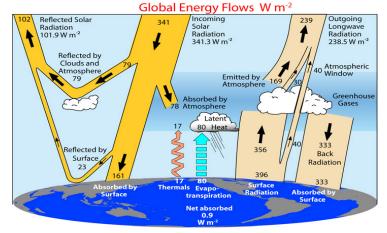
Multi-scale transport and exchange processes in the atmosphere over mountains – Programme and experiment

Mathias W Rotach¹

on behalf of the TEAMx Coordination and Implementation Group

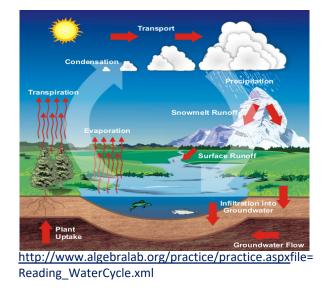
M. Arpagaus², J. Cuxart³, S.F.J. De Wekker⁴, V. Grubišić⁵, N. Kalthoff⁶ D.J. Kirshbaum⁷, M. Lehner¹, S.D. Mobbs⁸, A. Paci⁹, E. Palazzi¹⁰, S. Serafin¹², D. Zardi¹¹

¹University of Innsbruck, ²MeteoSwiss, ³University of the Balearic Islands ⁴University of Virginia, ⁵NCAR EOL, ⁶Karlsruhe Institute of Technology, ⁷McGill University ⁸National Centre of Atmospheric Sciences, ⁹Meteo France, ¹⁰ISAC CNR, ¹¹University of Trento, University of Vienna


www.teamx-programme.org

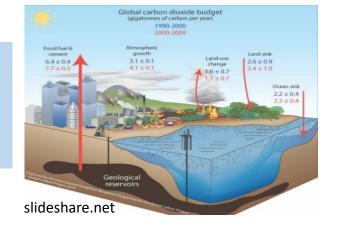
TEAAX It is about ... exchange processes over mountains

Momentum



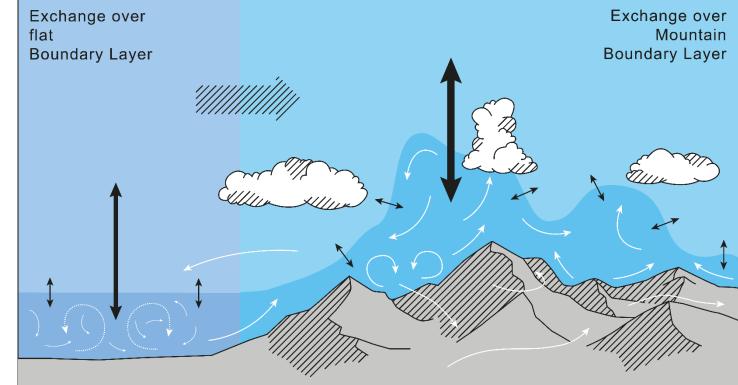
https://scied.ucar.edu/longcontent/energy-budget

- orographic blocking
- gravity wave breaking
- orographic drag parameterizations in general circulation models
- thermally driven breezes
- cold air pooling
- ➢ interaction meso- ↔ local scales
- ho parameterizations


TEAAAX It is about ... exchange processes over mountains

Mass: water

- orographic precipitation
- triggering of convective precipitation
- "water towers" for the surrounding plains


Mass: CO₂ (trace gas)

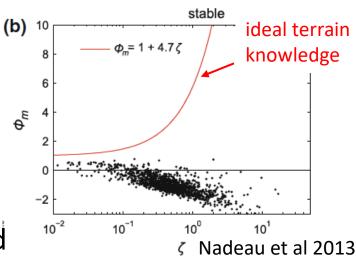
- global (regional) budgets most uncertain over land
- poorly represented exchange over orography may be one reason for 'missing sink'

TEAAX The Mountain Boundary Layer (MoBL)

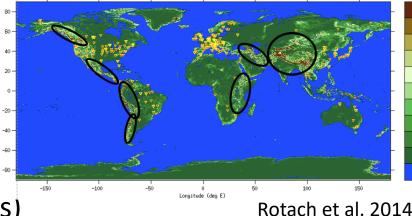
- Traditionally, earthatmosphere exchange through the Atmospheric Boundary Layer *vertical*
- Over mountains: interaction with mesoscale flows
 - \rightarrow thermally driven \rightarrow dynamically force
 - \rightarrow dynamically forced

- 3-dimensional: Mountain Boundary Layer MoBL
- spatially inhomogeneous

Atmospheric processes over mountains


- Processes often not understood
- numerical models

> data


- example
- turbulent exchange
 → based on HHF
- inadequate physics
- steep terrain
 → num instability
- expensive \rightarrow high resolution required

- spatial density
- Weather & Climate services (W&CS)
- limited by input data quality
- often mountain specific (e.g., flash floods)

Flux towers in mountain ranges

TEAMx Science Plan

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high- resolution model verification, parameterization development
Improving Weather and Climate Models	<i>Models right for the right reason</i> , i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation-dependent climate change).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

TEAMx – what is it?

Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains Programme and experiment

- …a bottom-up financed research program on weather, climate & air pollution in mountain areas
- ➢ in the 'tradition' of international mountain meteorology programs (ALPEX, PYREX, MAP → TEAMx)
- Institutional 'crowd funding' for a Programme Coordination Office (PCO - @ UIBK)

TEAMx – what do we do?

Activities

- coordination and collaboration
 - → special issue 'Atmosphere' on Atmospheric Processes over Complex Terrain
 - \rightarrow White Paper
 - \rightarrow Working Groups, joint proposals
 - \rightarrow meetings
- > TEAMx Observational Campaign (TOC) \rightarrow 2023-2024 (EOPs and IOPs)
- Numerical experimentation
 - \rightarrow reference cases
 - \rightarrow parameterizations
 - \rightarrow weather \leftrightarrow climate

Serafin et al 2020, ISBN 978-3-99106-003-1

General

- International collaboration
 - \rightarrow >170 scientists, 15 countries
 - → different fields (interdisciplinary)
- collaboration between operational and research institutions
 - → CIG funding: 3 MHSs, 2 natl. res institutions, 3 universities
- more accurate forecasts / seamless prediction
 - \rightarrow addressing processes/modeling/data issues
 - \rightarrow mountain weather and climate communities
 - → 'cross cutting project' of GEWEX Hydroclimate Panel
- relevant for society

High Impact Weather

- many types of high-impact weather typically in the mountains
 - → flash floods, avalanches, landslides, air pollution trapped, downslope wind storms, ...
- modeling these (services!, forecast) requires

 → correct input data ↔ process understanding, good atmospheric models
- Climate perspective
 - \rightarrow services

Saint-Martin Vesubie (F), Oct 5 2020, suedkurier.de

Water

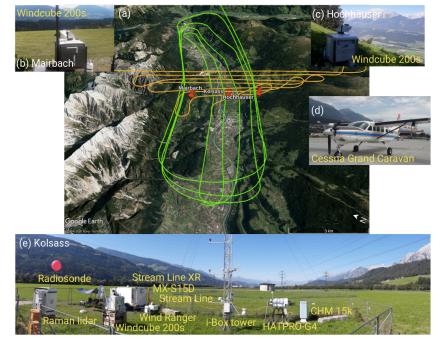
- ≻ HIW ...
- > water towers
 - \rightarrow drinking water (living water....)
 - \rightarrow energy
- not only 'too much water' (HIW): droughts
 - \rightarrow 'downstream population'
- ➤ again: climate perspective
 - \rightarrow services

https://www.grimselstrom.ch,

Urbanization

- > urban population in mountainous areas \rightarrow double penalty
- ➤ two target areas of the TOC
 → Innsbruck / Bolzano&Trento
 → urban (air quality) supersite
- scale interactions
 - \rightarrow urban vs complex terrain

Innsbruck by night – and under the cloud


https://twitter.com/InnsbruckTVB/status/94134834967 6081153/photo/1

Evolving technology

- ➢ high-resolution modeling: a must
 → additional challenges
- many (new) observation technologies
 - \rightarrow based on HHF assumption
 - \rightarrow not plug and play
- Chance for 'new combinations'

 → combine different types of instruments

Adler et al 2020, BAMS

Summary

- Bottom-up financed research project on exchange processes over mountainous terrain
- TEAMx Observational Campaign: 2023-2024
- \succ numerical experimentation \rightarrow model improvement
- addresses the key challenges of WWRP Strategic plan
 for mountainous terrain

Thanks for endorsement by WWRP SSC as a WWRP RDP!