

Towards Climate-Smart Alpine Forests Climate Change in Mountainous Areas

Mathias W. Rotach

Department of Atmospheric and Cryospheric Sciences University of Innsbruck

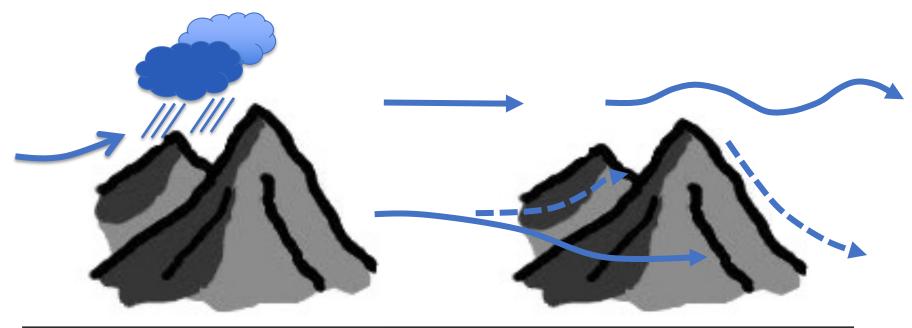
Climate change

- ... is a reality
- **2021**:
 - \rightarrow new IPCC report (AR6)
 - → disastrous forest fires in Mediterranean
 - → record temperatures in US
 - $\rightarrow \dots$
- 'Paris' is hardly reachable
- adaptation strategies needed ... and Climate-Smart Alpine Forests are one possibility

Mountain areas

doubled climate sensitivity

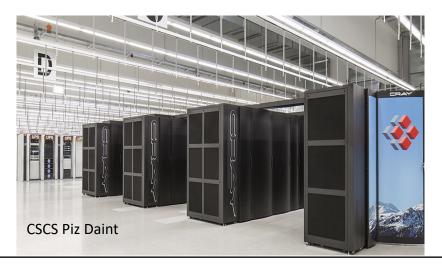
....about 2°C warming realised


- fragile ecosystems
- massive services to society
 - → water towers
 - \rightarrow recreation
 - → renewable energy
 - \rightarrow all the **forest services**....

Mountain Weather and Climate

- mountains influence weather and climate
 - → orographic precipitation
 - → flow modifications
 - > mountain windstorms
 - > Föhn (Bora, Mistral, Chinnook, ...)
 - → gravity waves, (rotors)

Which climate conditions to be expected?

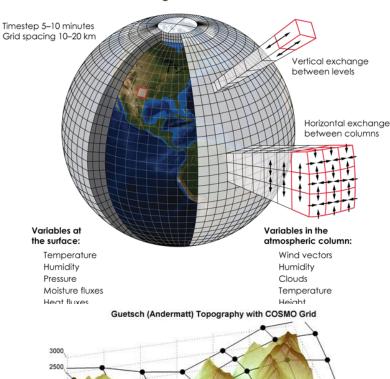

- - Need to measure
 - → harsh conditions
 - \rightarrow validate the models
 - → sparse data coverage

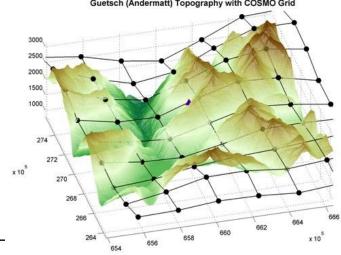
For the future:

- \rightarrow need to model
- → big computers

Climate modeling

grid on the atmosphere:

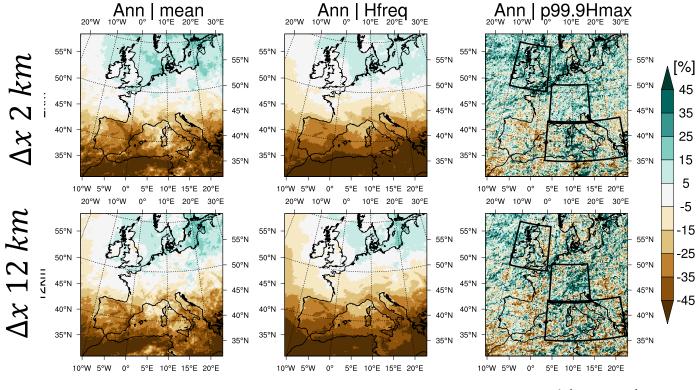

- → determine in each grid box:
 - > physical processes
 - > first principles



In the mountains

- \rightarrow resolution
- → regional climate:
 - ~10 km grid boxes

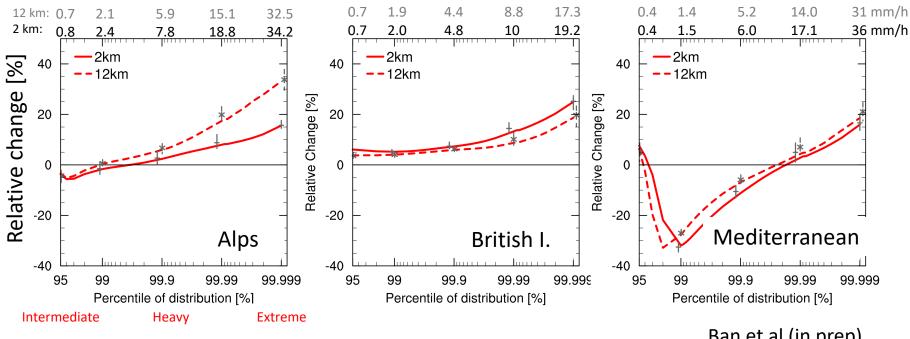
Weather forecast modeling



Climate projections – annual precipitation

- > ,climate model resolution': too coarse for the Alps
 - → high-resolution 'pseudo-global warming' experiments

→ p99.9 – 99.9th
percentile of all (wet
& dry) events (0.1%
corresponds to 4
events per 10 years)
of daily maximum
hourly (Hmax)
precipitation


Ban et al (in prep)

Climate projections - reliability

Example: Hourly Precipitation, extremes

Relative changes in the precipitation intensity for different intensity

Ban et al (in prep)

→ largest impact of grid spacing: Alps

Climate projections – needs for the smart forests

- only temperature and precipitation?
 - → what is it that determines forest growth / adaptation?
 - → any specific (atmospheric) conditions for pests?
- Can we reliably get the required information?
 - \rightarrow from the models?
 - → more (other) data needed?

We do our best

- Large international research programme on
 - → mountain weather and climate
 - \rightarrow TEAMx

Supported by

- → World Climate Research Programme of WMO
- → World Weather Research Programme of WMO
- → climate service providers (Meteorological & Hydrological Services)
- → universities & research institutions
- 📤 Better understanding / better models / more data
 - → better information for e.g. Climate-Smart Alpine Forests

The Scene.....

- Planning for Climate-Smart Alpine Forests
 - → requires climate information (projections) where it is most challenging
 - → requires information on variables not usually measured (not even modelled)
- International collaboration is essential
 - \rightarrow TEAMx
 - → international programmes (WMO, Copernicus, PRACE, ...)

