

TEAMx and its relation to applications in Earth system modelling

Mathias W. Rotach¹, Marco Arpagaus², Joan Cuxart³, Stephan De Wekker⁴, Vanda Grubišić⁵, Norbert Kalthoff⁶, Dan Kirshbaum⁷, Manuela Lehner¹, Stephen Mobbs⁸, Alexandre Paci⁹, Elisa Palazzi¹⁰, Stefano Serafin¹, Dino Zardi¹¹

¹University of Innsbruck, ²MeteoSwiss, ³University of the Balearic Islands⁴University of Virginia, ⁵NCAR EOL, ⁶Karlsruhe Institute of Technology, ⁷McGill University ⁸National Centre of Atmospheric Sciences, ⁹Meteo France, ¹⁰ISAC CNR, ¹¹University of Trento

Outline

- TEAMx in a nutshell
 - what is it?
 - 'who' is it?
 - what do we do?
- Weather and Climate Service providers

Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains Programme and experiment

- ...a bottom-up financed research programme on weather, climate
 & air pollution in mountain areas
- In the 'tradition' of international mountain meteorology programmes (ALPEX, PYREX, MAP)
- Institutional 'crowd funding' for a Programme Coordination Office (PCO - @ UIBK)

Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains Programme and experiment

- Embedded in international programmes
 - \rightarrow <u>Crosscutting project</u> within the GEWEX Hydroclimatology Panel (<u>GHP</u>)
 - \rightarrow endorsement sought within WWRP (pending)
 - \rightarrow WMO High Mountain Summit
- Coordination with other international activities
 → e.g., COST action PROBE

TEAMx – 'who' is it?

A group of institutions...

universität

innsbruck

- 'crowd funding' for a Programme Coordination Office (PCO)
 - → sponsors: Karlsruhe Institute of Technology KIT, Météo France, MeteoSwiss, National Center for Atmospheric Science (NCAS), University of Innsbruck, University of Trento, ZAMG, Center for Climate Systems Modeling (C2SM)
 - \rightarrow Progamme Coordinator: Helen Ward (UIBK)

A group of institutions...

TEAMx – 'who' is it?

- Memorandum of Understanding
 - → signed by interested institutions
 - → support research topic, liaise projects, contribute to discussion, workshops,
 - → open for signature (contact Helen)

TEAMx – 'who' is it?

- Coordination and Implementation Group (CIG)
- Individuals from (mostly) sponsoring insitutions
- Marco Arpagaus, MeteoSwiss
- Joan Cuxart, Universitat de les Illes Balears
- Stefan De Wekker, University of Virginia
- Vanda Grubišić, NCAR
- Norbert Kalthoff, Karlsruhe Institute of Technology (KIT)
- Daniel Kirshbaum, Mc Gill University
- Manuela Lehner, University of Innsbruck
- Stephen Mobbs, University of Leeds (NCAS)
- Alexandre Paci, Meteo France (CNRS)
- Elisa Palazzi, ISAC CNR
- Mathias Rotach, University of Innsbruck (chair)
- Stefano Serafin, University of Innsbruck (former PC)
- Dino Zardi, University of Trento

,runs the programme'

TEAMx – 'who' is it?

TEAMx – what do we do?

foster research on Multi-scale Transport and

Exchange Processes in the Atmosphere over Mountains

Foster research on Multi-scale Transport and Exchange Processes in the Atmosphere over Mountains

→ orography impacts the atmospheric flow
 → the global water cycle

 carbon cycle
 energy budget
 momentum budget

 → meso-scale flow modification

 \rightarrow local exchange processes

universität

nnshruck

 \rightarrow orography creates conditions for air pollution

https://scied.ucar.edu/longconten t/energy-budget

TEAMx – what do we do?

- foster research on Multi-scale Transport and
 - Exchange Processes in the Atmosphere over Mountains

TEA

- Many of the atmospheric processes over mountains
 - \rightarrow gaps in knowledge
 - \rightarrow especially with respect to exchange processes

unstable stratification (daytime)

Exchange processes over mountains TEAAX

- Many of the atmospheric processes over mountains
 - \rightarrow gaps in knowledge
 - \rightarrow especially with respect to exchange processes
- ➢ Boundary Layer → Mountain Boundary Layer (MoBL) → layer influenced by surface (trad) & mesoscale processes
- Numerical models
 - → parameterize exchange using an assumption of horizontally homogeneous and flat

Exchange processes over mountains TEAAX

- > Boundary Layer \rightarrow **M**ountain **B**oundary Layer (MBL)
 - \rightarrow layer influenced by surface (trad) & mesoscale processes
- Numerical models
 - → parameterize exchange using an assumption of *horizontally homogeneous and flat*
- Data sets are sparse

niversität

nnshruck

- → inhomogeneity <-> data density
- \rightarrow especially turbulence data

- Knowledge gaps
 - \rightarrow White Paper (Serafin et al. 2020), soon on the website
 - → working groups on specific processes (land-atmosphere exchange, MoBL, convection, mountain climates, ...)
- Prepare for a joint observational experiment
 - \rightarrow 2023-2024, yearlong observational programme
 - \rightarrow summer and winter IOP
 - \rightarrow 3 'superboxes' (target areas) north/south of the Alps
 - \rightarrow seek obs. support from outside Europe
- Numerical experimentation
 - \rightarrow idealized & real-terrain modelling
 - \rightarrow reference cases
 - \rightarrow short and long time scales

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.
	Se	rafin et al. 2020, TEAMx-White Paper

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

Objective	Primary Focus	Target
Process understanding	Micro- and meso-scale processes within and above the <i>mountain</i> <i>boundary layer</i> (MoBL); Interaction between scales.	Quantitative understanding of momentum, energy and mass exchange over mountainous terrain
TEAMx Joint Experiment(s)	Collaborative use of multi-platform instrumentation to sample the spatial heterogeneity of turbulence and mesoscale circulations over and near mountains	Quality-controlled observational data pool, available for process investigation, high-resolution model verification, parameterization development
Improving Weather and Climate Models	Models right for the right reason, i.e., identification and reduction of model biases and uncertainties over complex terrain	Weather forecasts and climate simulations over mountains as good as over flat terrain, and less reliant on model output post- processing
Support to Weather and Climate Service Providers	Air pollution, hydrology, climate change scenarios (e.g., elevation- dependent warming).	Smaller uncertainty of impact models, due to reduced errors in weather and climate information.

W&C Services over mountains

- Depend on exchange processes

 → not only PTU (but also turbulence, meso-scale flow, interaction)
- air pollution / hydrology / renewable energy / climate diagnostics / health / weather diagnostics / agricultural & ecological modelling / ... over mountains
- today's topic...

Goals for today

- Learn from Earth Systems Service providers
 - \rightarrow most urgent needs
 - \rightarrow critical variables / data sets / physical processes
- Foster potential collaboration
 - \rightarrow among/ across disciplines
 - → specific (data) needs for experiment / numerical modelling
- Discussion: how can the community of Earth System Service providers [in mountain areas] be involved in TEAMx?

Thank you for your attention!

- TEAMx Website: http://www.teamx-programme.org
- \blacktriangleright PCO: Helen (\rightarrow see web site for contact information

Funding

- TEAMx is bottom-up financed
- While applying for funding, project PIs may request TEAMx "endorsement". Endorsement implies contributing and accessing to common data pool. Data policy in preparation.
- Projects can be individual, bi- or multi-lateral.
- TEAMx CIG/PCO supports coordination and initiation of new collaborative projects.

